Natural rubber bound phenolic antioxidant and its application in thermoplastic elastomer

*Pairote Klinpituksa1), Anyarat Kiarttisarekul2) and Azesan Kaeasaman3)

1) Department of Science, 2), 3) Department of Rubber Science and Polymer Technology, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000 Thailand

1kpairote31@gmail.com

ABSTRACT

Natural rubber bound phenolic antioxidant, 2,6-di-tert-butyl-4-vinylphenol (2,6-DBVP), was prepared from natural rubber and 2,6-DBVP in both solution and melt state. The 2,6-DBVP had been synthesized from 3,5-di-tert-butyl-4-hydroxybenzaldehyde and methyltriphenylphosphonium iodide (MePPh3I) by Wittig reaction (0°C for 2 hrs, N2 atmosphere). The conditions for preparation of natural rubber bound 2,6-DBVP (NR-DBVP) were optimized for both solution state (1 phr BPO and 8 phr 2,6-DBVP at 70°C for 2 hrs) and for melt state (1 phr BPO and 8 phr 2,6-DBVP at 70°C for 10 mins, with rotor speed of 60 rpm). A thermoplastic vulcanizate was obtained using a compatibilizer, polypropylene modified with phenolic resin (PhHRJ-PP), in a closed mixer (180°C for 3 mins, rotor speed 60 rpm). The antioxidant properties of vulcanized NR-DBVP, using phenolic as the vulcanization system, were similar to NR with the conventional antioxidant BHT. In addition, the antioxidant, water leaching property of the thermoplastic vulcanizate of NR-DBVP/PP were good in comparison to a NR blend with BHT; the morphologies of these thermoplastic vulcanizates were similar.
1. INTRODUCTION

Rubber products undergo degradation which is mainly caused by oxygen, ozone, heat and dynamics stress. Consequently, there is an effort to improve rubber stability during processing, when exposed to the vulcanization thermal conditions and during the lifetime when exposed to the external environment. The thermal oxidation of rubber is an autocatalytic, free-radical chain reaction where the oxidative products are carboxylic acid, aldehyde, ketone, epoxide, etc. The rate of the oxidation process can be reduced using antioxidant (Cibulková 2005). The antioxidants are practically introduced in a rubber formulations for fabrication of rubber products. They usually loss during processing for example, through migration into surrounding environment, by leaching out into contact constituents, leads not only to premature failure of the rubber article but also to problems associated with heath hazardous and toxicological effects (Al-Malaika, 1977). These crucial problems may be overcomed by attaching of these antioxidants moieties to the macromolecular natural rubber by covalent bond which so-called rubber-bound antioxidant. The important advantages of this approach relative to conventional antioxidants is resistant to extraction, non-volatile and not prone to migrate into other materials.[3]. Several efforts have been devoted to investigating the associated problems of the performance and physical loss of antioxidants, for example the natural rubber-bound \textit{para}-phenylenediamine antioxidant (Avirah,1995), polyisobutylene-bound \textit{para}-phenylene diamine (Sulekha,1999), chlorinated polyisobutylene-bound alkylated phenolic antioxidant, (Sulekha, 2003), natural rubber-bound 4-aminodiphenylamine antioxidant (Klinpituksa, 2011) and natural rubber-bound N-(4-hydroxyphenyl) maleimide antioxidant (Klinpituksa,2012).
The aim of this work was to prepare rubber-bound antioxidant from the reaction of natural rubber with a phenolic antioxidant, 2,6-di-tert-butyl-4-vinylphenol (DBVP). The properties of thermoplastic vulcanisate NR-DBVP/PP blend using phenolic vulcanization system and polypropylene modified phenolic resin (PhHRJ-PP) as compatibilizer in comparison to NR blend with an identical conventional antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT) was also investigated.

2. EXPERIMENTAL

2.1 Synthesis of 2,6-di-tert-butyl-4-vinylphenol (DBVP) antioxidant

A 250 mL round bottom flask fitted with a mechanical stirrer and water-cooled condenser immersing in oil bath was charged with 100 mL glacial acetic acid and 30.85 g ammonium acetate. 10.3 g (0.05 mole) 2,6-di-tert-butylphenol and 18.08 g (0.6 mole) formaldehyde were then introduced and refluxed at 107°C for 6 hours for obtaining an intermediate 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DBHB). The 2,6-di-tert-butyl-4-vinylphenol (DBVP) was finally prepared from the reaction of 4.68 g (0.02 mole) DBHB obtained with 24.24 g (0.06 mole) methyltriphenylphosphonium iodide (obtaining by Wittig reaction of 13.1 g triphenylphosphine with 3.2 mL methyl iodide in 50 mL tetrahydrofuran) in the presence of 7.83 g (0.07 mole) potassium tert-butoxide in dried tetrahydrofuran. The reaction was proceed at 0°C under N2 atmosphere for 1.30 hours. The DBVP with orange-yellow solid color was obtained by extracting with diethyl ether, separating and drying.

2.2 Preparation of natural rubber bound DBVP (NR-DBVP)

3 g of dried natural rubber was dissolved in 150 mL toluene in a 250 mL round bottom flask equipped with mechanical stirrer and nitrogen inlet immersing in water bath at 70°C. The 1 phr benzoyl peroxide, 2-
10 phr DBVP were added into natural rubber solution and stirred in the period of 2 hrs. The NR-DBVP was obtained by precipitating the reaction mixture in acetone, washed several times with acetone and dried in oven at 50°C.

2.3 Effect of NR-DBVP/PP and NR+BHT/PP blends on thermoplastic vulcanisate properties

The thermoplastic vulcanisate was prepared from blending of NR-DBVP/PP and NR+BHT/PP by varying NR-DBVP/PP ratio of 50/50, 60/40 and 70/30 (in phr) using phenolic vulcanization system and 5% polypropylene modified phenolic resin (PhHRJ-PP) as compatibilizer (preparing as describe in previous work [9]) in a closed mixer (180°C for 3 mins, rotor speed 60 rpm). The butylated hydroxytoluene (BHT), an identical conventional antioxidant was also compared as an internal antioxidant for blending of natural rubber with polypropylene (NR/PP ratio of 60/40). Samples were moulded in an electrically heated hydraulic pressed at 180°C, pressure at 1,500 lbs/inh² for 10 mins and cool for 20 mins and then punched out for tensile testing.

3. RESULTS AND DISCUSSION

3.1 Characterization of DBVP and NR-DBVP

The monomeric antioxidant DBVP obtained was confirmed by appearance of principal FTIR absorption peaks at 3600 cm⁻¹ and 1234 cm⁻¹ assigning to –OH and C-O stretching of phenol, at 1629 cm⁻¹ and 1362 cm⁻¹ assigning to –CH=CH₂ and –C(CH₃) stretching, respectively (Fig. 1).
Fig. 1 FTIR spectrum of monomeric antioxidant 2,6-di-tert-butyl-4-vinylphenol (DBVP)

Moreover, The FTIR spectra of NR-DBVP at various DBVP contents compared with unbounded natural rubber (NR) was shown in Fig. 2. The appearance of principal absorption peaks was found at 1234 cm\(^{-1}\) and 835 cm\(^{-1}\) corresponding to C-O stretching and \(=\text{CH}\) out-plane bending of DBVP and natural rubber, respectively.

Fig. 2 FTIR spectra of NR-DBVP by varying 2-10 phr DBVP contents at 70\(^{\circ}\)C for 2 hours compared with original NR

The possible reaction for preparation of DBVP and NR-DBVP are illustrated in Scheme 1 and Scheme 2.
Scheme 1 Preparation of monomeric antioxidant 2,6-di-tert-butyl-4-vinylphenol (DBVP) from 2,6-di-tert-butylphenol via formylation and Wittig reactions
Scheme 2 A possible reaction for preparation of NR-DBVP in solution using 1 phr benzoyl peroxide (BPO) as initiator at 70°C for 2 hours

3.2 Properties of thermoplastic vulcanizate of NR-DBVP/PP and NR+BHT/PP blends

Fig. 3 and Fig. 4 show the tensile strength and elongation at break of thermoplastic vulcanisate before and after ageing for NR-DBVP/PP and NR+BHT/PP blends (60/40 ratio) using phenolic vulcanization system. Both thermoplastic vulcanisates show fairly good resistance to ageing. However, the tensile properties and ageing resistance of bound antioxidant was similar to that of NR blended with BHT.

Fig. 3 Variation of tensile strength with NR-DBVP/PP and NR+BHT/PP blends before and after ageing

Fig. 4 Variation of elongation at break with NR-DBVP/PP and NR+BHT/PP blends before and after ageing

Fig. 5 and Fig. 6 show the tensile strength and elongation at break of both thermoplastic vulcanisate blends for leaching testing by immersing the samples in distilled water for 7 days. The obtained samples were then aged (cell type ageing oven) at 100°C for 22 hours. The results showed that both tensile properties for the blends in term of water resistance was similar. This is may be due to the amount of DBVP bonded to NR was rather small compared to BHT used in NR blend.
Fig. 5 Variation of tensile strength with NR-DBVP/PP and NR+BHT/PP blends before and after ageing for water leaching 7 days

Moreover, the morphology of NR-DBVP/PP and NR+BHT/PP blends was performed by using scanning electron microscope (SEM). It was showed that the dispersion of vulcanized rubber in polypropylene phase of both thermoplastic vulcanisate was similar fitting to similar tensile property mentioned above. (Fig. 7)
Fig. 7 Morphology of thermoplastic vulcanisate for NR-DBVP/PP (a) and NR+BHT/PP (b) blends (ratio of 60/40)

4. CONCLUSION

The 2,6-di-tert-butyl-4-vinylphenol was successful synthesized in-house from 2,6-di-tert-butylphenol and bounded by chemical linkage to natural rubber molecule in solution and melt conditions. The natural rubber bound antioxidant 2,6-di-tert-butyl-4-vinylphenol (NR-DBVP) showed similar the ageing resistance, water leaching and morphology of NR-DBVP/PP thermoplastic vulcanizes compared to conventional antioxidant BHT.

ACKNOWLEDGEMENT

Financial support by National Research Council of Thailand (NRCT) and Graduate School, Prince of Songkla University, Thailand is gratefully acknowledged.

REFERENCES

1511-1524.