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ABSTRACT 
 

“White layer” is a term referring to hard layers of material in the vicinity of surfaces that are 
generated during various machining and deformation processes. The elastic modulus and yield 
stress within white layers may increase by 170% and 390%, respectively. It is therefore 
reasonable to expect that such a huge difference in the mechanical properties between the 
narrow surface layer and base material affects the distribution of stresses and strains. The 
present papers deals with thin annular discs subject to internal pressure. It is assumed that 
there is a narrow hard layer in the vicinity of the inner surface of the disc. The flow theory of 
plasticity based on the von Mises yield criterion and its associated flow rule are adopted in the 
plastic region of the disc. A semi-analytical solution is found. 

Keywords: thin disk, plane stress conditions, von Mises yield criterion, flow theory of plasticity, 
residual stress and strain, semi-analytic solution. 
 

1. Introduction 

 “White layer” is a term referring to hard layers of material in the vicinity of surfaces. 
Such layers are generated during various machining and deformation processes 
(Griffiths, 1987). The majority of publications devoted to white layers have been 
concerned with mechanisms of the generation of such layers and wear (Griffiths, 1987, 
Cho et al., 2012, Huang et al., 2013 among many others). Influence of white layers on 
the development of rolling contact fatigue has been demonstrated in Warren and Guo 
(2005) using a numerical method and in Choi (2010) using an experimental technique. 
Tribological advantages of white layers have been discussed in Griffiths and Furze 
(1987). It is of interest to understand how white layers affect structure and component 
performance under other loading conditions. In particular, it has been found in Cho et al. 
(2012) that the elastic modulus and yield stress within white layers may increase by 
170% and 390%, respectively. It is therefore reasonable to expect that such a huge 
difference in the mechanical properties between the narrow surface layer and base 
material affects the distribution of stresses and strains including residual stresses and 
strains in structures under service conditions. Analytic and semi-analytic solutions are 
very useful to reveal this possible effect, even though such solutions by necessity 
involve simplifying assumptions. The present paper presents a semi-analytical solution 
for the elastic/plastic distribution stress and strain in a thin annular disc subject to 
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pressure over its inner radius. It is assume that there is a white layer in the vicinity of 
the inner radius. The enlargement of a hole in plates or discs is one of the classical 
problems of plasticity. Solutions to this problem for various material models are 
contained in textbooks and monographs. A recent review of available solutions for the 
enlargement of a circular hole in thin plates has been given in Masri et al. (2010). 
However, most studies for elastic/plastic models have only focused on deformation 
theories of plasticity, unless Tresca’s yield criterion is adopted. The present paper deals 
with the flow theory of plasticity and the von Mises yield criterion. 

 
2. Statement of the problem 
 

Consider a thin hollow disc of yield stress 
0 , Poisson’s ratio  , Young’s modulus E, 

outer radius 
0b , and inner radius 

0a . It is assumed that there is a narrow hard layer in 

the vicinity of the inner surface of the disc. The yield stress and Young’s modulus within 

this layer are denoted by 
l  and 

lE , respectively, and the thickness of the layer by   

(Figure 1). In general, 
0l   and 

lE E . The disc is loaded by an uniform pressure, 

0p , applied over its inner radius. The disc has no stress at 
0 0p  . Strains are 

supposed to be infinitesimal. At the stages of loading and unloading the state of stress 

is two-dimensional  0z
 in a cylindrical coordinate system  , ,r z  with its z-axis 

coinciding with the axis of symmetry of the disc. Here, 
z  is the axial stress (

r  and   

will stand for the radial and circumferential stresses, respectively). The boundary value 
problem is axisymmetric, and its solution is independent of  . The circumferential 
displacement vanishes everywhere. The normal stresses in the cylindrical coordinate 
system are the principal stresses. The boundary conditions are 

0r                                       (1) 

for 
0r b  and  

0r p                           (2) 

for 
0r a .  

It is assumed that the hard layer is purely elastic. The corresponding constitutive 
equations are  
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Here r ,   and z  are the radial, circumferential ad axial strains, respectively, in 

the cylindrical coordinate system. The domain 0 0a r b    is in general elastic/plastic. 

In particular, if 0p  is high enough then this domain consists of two regions, elastic and 

plastic. The constitutive equations in the elastic region are 
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The superscript e denotes the elastic part of the strain and will denote the elastic 
part of the strain rate as well. In the elastic region, the whole strain is elastic. The 
superscript e is employed in Eq. (4) as the same equations are satisfied by the elastic 
part of the strain in the plastic region. The superscript can be dropped in the elastic 
region. It is assumed that the von Mises yield criterion and its associated flow rule are 
valid in the plastic region. These equations in plane stress are written as 

2 2 2
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where   is a non-negative multiplier. The superimposed dot denotes the time 
derivative at fixed r, and the superscript p denotes the plastic part of the strain and 

strain rate. Thus, p

r , p

  and p

z  are the plastic strain rates. The total strains and strain 

rates in the plastic region are 

, ,

, , .

e p e p e p

r r r z z z

e p e p e p

r r r z z z

  

  

        

        

     

     
            (7) 

The material model adopted is rate-independent. Therefore, the time derivative can 
be replaced with the derivative with respect to any monotonically increasing or 
decreasing parameter q. In particular, it is convenient to introduce the following 
quantities 
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The constitutive equations should be supplemented with the equilibrium equation of 
the form 

0.r r
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               (9) 

It will be seen later that the use of the equation of strain rate compatibility facilitates 
the analysis. This equation is equivalent to  

0.r

r r

    
 


                         (10) 

It is convenient to introduce the following dimensionless quantities   
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3. Purely elastic solution in the hard layer 

The general axisymmetric purely elastic solution under plane stress conditions is well 
known (see, for example, Hill (1950)). Using Eq. (11) this solution can be written as 

 
 

 
 

2 2

0 0

2 2

, ,

1 1
1 , 1 , 2 .

r l l
l l

l lr z
l l l

l l l

A A
B B

A As s s
B B B

k k k





 

   

   
  

 

    

 
        

                 (12) 

Here 
lA  and 

lB  are constants of integration. Using Eq. (11) the boundary condition (2) 

and the solution (12) combine to give 

2
.l

l
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Then, it follows from Eqs. (12) and (13) that 
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Here   and   are the values of r  and  , respectively, at 
0r a   (or a   ).  

Differentiating Eq. (14) for   with respect to q leads to  
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Here   is the value of   at a   . 

 
4. Purely elastic solution in the domain 1a      and the initiation of plastic 

yielding 

The purely elastic solution in the domain 1a      has the same form as Eq. (12). In 

particular, using Eq. (11) 
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(16) 



Here A  and B  are new constants of integration. Using the boundary condition (1) 
yields  

0A B  .                         (17) 

The radial stress and the circumferential strain are continuous across the surface 
a   . Therefore, it follows from Eqs. (14), (16) and (17) that  
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This is a linear system of equations for A and 
lA . Its solution can be readily found. In 

particular,  
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Using Eqs. (13) and (19) the distribution of stresses and strains within the hard layer is 
determined from Eq. (12). Analogously, using Eqs. (17) and (19) the distribution of 
stresses and strains in the range 1a      is determined from Eq. (16). Substituting 

Eqs. (16) and (17) at a    into Eq. (5) yields  
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Here 
eA  is the value of A at which the plastic region starts to develop at a   . It 

follows from Eqs. (19) and (20) that 
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Here 
ep  is the value of p at which the plastic region starts to develop at a   . In 

what follows, it is assumed that 
ep p . 

 
5. Elastic/plastic solution in the domain 1a      

Let 
c   be the elastic/plastic boundary. The general solution (16) is valid in the 

elastic region 1c   . Equation (17) is also valid. However, A and 
lA  are not 

determined from Eq. (19). In the plastic region, 
ca      , there are two stress 

equations, Eqs. (5) and (9). The yield criterion (5) is satisfied by the following standard 
substitution   
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Substituting this equation into Eq. (9) ad using Eq. (11) yield   
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It follows from Eqs. (14) and (22) that   
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Therefore, the boundary condition to Eq. (23) is 

                                           

            (25) 

for a   . The solution of Eq. (23) satisfying this boundary condition is  
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where   is a dummy variable of integration. The integral in Eq. (26) can be evaluated 

to give   
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Using Eq. (11) the elastic strain in the plastic region are determined from Eqs. (4) and 
(22) as   
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In what follows, it is assumed that q  . Then, differentiating Eq. (28) with respect to 

  leads to    
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In order to find the derivative    , it is necessary to differentiate Eq. (26). As a 

result,  

   
2cos 2cos

.
3 cos sin 3 cos sin

d d d 

 

    

    
 

 
                                      (30) 

It follows from this equation that  
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Eliminating   in Eq. (6) and replacing the time derivative with the derivative with 

respect to   yield 
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Eliminating 
r  and   in these equations by means of Eq. (22) gives 
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Using Eqs. (7), (11) and (33), Eq. (10) can be rewritten as  
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Replacing here differentiation with respect to   with differentiation with respect to   by 

means of Eq. (23) leads to 
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Using Eqs. (29) and (31) it is possible to represent e

r  and e

  as functions of   and  . 

Then, Eq. (34) becomes  
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Let 
c  be the value of   at 

c   and 
c  be the value of   at 
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equation (35) satisfying the boundary condition 
c   at 

c   is  

 
 

    
 

cos
exp 3

3 3 cos sin

1 2 3sin 2 cos2 2 2
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c
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k k

d
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 





  
 

 

   
  



    
  

    
   

 

                     (36) 

The equation for the strain   is  

. 


 

  


  

  
 

  
                             

Using Eq. (31) this equation ca be rewritten as  

     3cos sin 3cos sin 3cos sin
.

cos cos cos
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 
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 
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It is evident from this equation that    is a characteristic curve and the relation 

along this characteristic curve is 

.
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d


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





                                            

(38) 

Here   is given by Eq. (15) in which differentiation in terms of q should be replaced 

with differentiation with respect to  . On the other hand, it follows from Eq. (36) that   
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(39) 

In order to solve Eq. (38), it is necessary to find c  and c  as functions of  . The 

stresses r  and   are continuous across the elastic/plastic boundary. Therefore, it 

follows from Eqs. (16), (17) and (22) that  



2 2
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Solving these equations for 
c  and A gives  
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Equation (27) supplies the relation 
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2 sin 3
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The relation that connects 
c  and   is readily determined from Eqs. (40) and (41) as 
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Both   and   are continuous across the elastic/plastic boundary. Therefore, 
c  is 

equal to the value of   on the elastic side of this boundary. The latter is found from Eq. 

(16). Then, using Eqs. (17) and (40)  
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Differentiating Eq. (42) and using Eqs. (40) and (41) give 
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Substituting Eqs. (40) and (44) into Eq. (43) results in 

   3 cos2 sin 211
1 cot 3 cot .

8 6 3 sin3

c c
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Equation (42) should be solved numerically for c . Having found the value of c , it 

is possible to eliminate 
c  in Eq. (39) by means of Eq. (45). This determines the right 

hand side of Eq. (38) as a function of a . Subsequent numerical integration supplies 

the value of  . The other strains can be found is a similar manner.  

 
6. Conclusions 

A new semi-analytical solution for the elastic/plastic distribution of stresses and strains 
in a thin annular disk subject to pressure over the edge of the hole has been found. It is 
assumed that there is a white layer in the vicinity of the edge of the hole. This layer is 



purely elastic. The constitutive equations are the von Mises yield criterion and its 
associated flow rule. Thus the material is plastically incompressible. The boundary 
value problem has been reduced to solving transcendental equations and numerical 
integration. 
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