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ABSTRACT 
 

     Military rotorcraft is constantly exposed to the risk of the bullet impacts because 
they operate in a battle environment. Since the bullet impact damage can be deadly to 
crews, the fuel cells of military rotorcraft must be designed by taking extreme situations 
into account. Fuel cell design factors to be considered include the internal fluid 
pressure, the structural stress, and the kinetic energy of the bullet. Verification testing 
using real objects is the best way to obtain these design data effectively, but, may be a 
big burden due to the huge cost and long-term preparation efforts. The use of various 
numerical simulations tests at an early design stage can reduce the risk of trial-and-
error and improve prediction of performance. The present study investigated the effects 
of bullet impacts on fuel cells using numerical simulation based on SPH(smoothed 
particle hydrodynamic) conducted with the commercial package, LS-DYNA. Then, the 
resulting equivalent stress, the internal pressure and the kinetic energy of the bullet 
were evaluated in detail to examine the possible use of the numerical method to obtain 
configuration design data for the fuel cell 
 
1. INTRODUCTION 
 

The basic function of an aircraft fuel cell is to store fuel. However, a fuel cell has a 
significant influence on the survivability of crews in aircraft emergency situations. Thus, 
the fuel cell should be designed by considering predictable extreme situations, such as 
an internal explosion or fire, in order to improve the survivability of the crew. To prove 
the soundness of a fuel cell, the U.S. government has established a military 
specification, so called MIL-DTL-27422 (U.S. Army Aviation and Missile Command 
2007), and requires the relevant test be performed under strict standards. In order to 
prove the soundness of a fuel cell, it is most preferred to carry out the verification test 
using the actual product. However, a verification test using the actual product requires 
considerable expense. In addition, the design and manufacturing of a fuel cell takes a 
long time. Moreover, the cost of manufacturing a fuel cell may be a burden. When the 
fuel cell test results in failure, the cost and time for further examination will affect the 
overall aircraft production period. For instance, the most well-known rotorcrafts 
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including the AH-64 Apache, UH-60 Blackhawk utility helicopter, and tilt rotor V-22 
Osprey were all developed through several test failures and tough processes (Ugone et 
al. 2002). 

For these reasons, performing various numerical analyses of the fuel cell prior to 
proof testing can minimize the reliance on trial and error, and its costs. Furthermore, 
important design information may be produced through the cooperative research, since 
these numerical analyses can accumulate test data for extended operating times. 
However, in the past there have been numerous limitations to conducting such 
complicated simulations, such as fluid-structure interactions (FSI), because they require 
significant amounts of computer resources. Recently, with advanced technological 
breakthroughs and developments in computing and specialized software, it has 
become more feasible to conduct research such as FSI using various scenarios.  

This study carried out a numerical analysis of the FSI problem of the fuel cell 
assembly considering the situation in which a projectile hits a military rotary wing 
aircraft. There are two kinds of method for solving the FSI problem: the ALE method 
based on FEM, and the element free method, such as smoothed particle 
hydrodynamics (SPH). 

ALE sets up a Lagrangian mesh for the structure and Eulerian mesh for the fluid. 
This method can provide accurate results because it interchanges the interface 
information between the structure and fluid. However, it requires excessive computing 
time and computer resources. Moreover, under high-level impact conditions, ALE is 
liable to fail in a contact situation due to excessive deformation of meshes. Furthermore, 
it can cause fluid to leak out of the interface. SPH is based on the Lagrangian 
methodology. SPH assumes that each particle represents a material property within in 
a specific domain. Even though SPH requires a large number of particles for detailed 
fluid simulations, it can solve the FSI problem quickly compared to the ALE method. 
Regardless of twisted or excessive deformations, fluid does not leak out of the interface 
so long as the contact conditions are well set up between both interfaces. After 
considering the efficiency of the computing cost and propriety of the numerical 
simulations, this study employed the SPH method for the FSI analysis. The focus of this 
study was an FSI simulation based on SPH involving a bullet impact of a rotorcraft fuel 
cell assembly using the commercial package LS-DYNA.  

When a fuel cell is penetrated by anti-aircraft fire, there may be an internal explosion 
due to the sudden rise of internal fluid pressure. Moreover, once the bullet is inside the 
fluid, since the bullet’s movement changes irregularly, it is possible that it may have a 
fatal effect on the health of the fuel cell itself and internal attachments. Empirically, the 
bullet is likely to puncture the exit portion in the inclined posture. When the bullet hits 
with high kinetic energy, it may also endanger the survival of the aircraft and crew by 
causing excessive fuel leakage. In view of these emergency situations, in this present 
study, critical design information such as the behavior of the bullet, the internal fluid 
pressure and the stress values have been estimated. Furthermore, by evaluating how 
changes in the kinetic energy of the bullet affect the fuel cell, we approached the 
possibility of acquiring design data to help prepare for a bullet impact situation. 

This study considers the real time dynamic behavior of the fuel cell assembly and 
the internal fluid under a bullet impact load using an explicit method. The equivalent 
stress was calculated for each fuel cell and the weak area of the fuel cell assembly was 



investigated under a bullet impact load. 
The remainder of this paper is organized as follows. Section 2 briefly introduces the 

methodology of the SPH. Section 3 explains the conditions for the numerical simulation 
including the material information and analysis model using FEM and SPH. Finally, 
Section 4 presents the results of the numerical simulations of the bullet impact. 
 
2. Review of Smoothed Particle Hydrodynamics 
 

SPH represents large deformations well because it does not have fixed connectivity 
between particles. This method can be easily applied to complex geometries and large-
scale features are easy to obtain by tracing the particle motion. Because of these 
advantages, SPH has been primarily applied to shock simulations, free surface flows, 
and sound propagation (Monaghan et al.1983, Monaghan 1992, Herreros et al. 2011, 
Shao et al. 2012, Marongiu et al. 2010). Recently, it has been effectively applied to high 
explosive simulations and high velocity impact computation (Liu et al. 2003, Liu et al. 
2013, Johnson et al. 1996). 

The field values of each particle, ( )f x are evaluated using the smoothing kernel 

function. The SPH formation is presented in Eq. (1), as follows: 
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Here,  W x  is the smoothing kernel function, ρ is the particle density, m is the 

particle mass, h is the smoothing length, and  jf x is the physical value at the j 

position. 
The cubic spline function is mainly used for the smoothing kernel function as given in 

Eq. (2).The smoothing kernel function,  W x  should satisfy the three kinds of condition 

presented in Eq. (3) to Eq. (5). 
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Normalization condition :  ' ', 1W x x h dx


                  (3) 

 Delta function property :    ' '

0
lim ,
h

W x x h x x


              (4) 

Compact condition :  ' , 0W x x h   when 'x x h           (5) 

In Eq. (5), κ is a constant value that defines the effective non-zero area in the 
smoothing kernel function.  

In SPH, the continuity equation, momentum equation, and energy conservation are 
discretized as described in Eqs. (6) to (8). These equations are evaluated at each time 
step by the explicit integration procedure (Hahn 2009, Naval Surface Weapons Center 
1997). 
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