Elastic parameters of the Earth’s inner core

*Hatam Guliyev\(^1\)

\(^1\) Department of Tectonopysics and Geomechanics, IGG ANAS, Ave. H. Javid 119, Baku, AZ 1143 Azerbaijan

\(^1\) hatamguliye@gmail.com

ABSTRACT

The inner structure of the Earth’s core and the distribution of its main parameters are well-known and generally accepted. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength on the spherical surface of the inner core. It is shown that the basic principles of mechanics concerning the strength, stability and propagation of elastic waves required for the determination of physical and mechanical properties of the medium are violated in such conditions. Despite observance the necessary integrated conditions, application of the linear theory of elasticity and elastic waves does not provide reliability of results on the structure and distribution of the physical parameters of the Earth’s core. The obtained results leave in doubt the existence of the inner core in the form of a deformable solid sphere.

1. INTRODUCTION

Integrated interpretation of a variety of indirect geophysical and numerous laboratory and experimental data shows that the Earth’s core consists of an outer liquid sphere and inner solid sphere. Enough deep survey of researches on the structure and constitution of the Earth’s core has been made by Sumita and Bergman (2007), Hirose et al. (2013), Ohtani et al. (2013), Badro et al. (2014), Litasov and Shatskiy (2016). They have truly noted that, despite some achievements in various directions, problems related to the constitution and structure of the core and the lower mantle are far from unambiguous solutions. It is emphasized that further improvement of quantum chemical calculations using methods of molecular dynamics at high temperature would allow making progress in generation of consistent models of constitution and dynamics of the Earth’s mantle and core.

The detailed information on the distribution of the physical parameters in the Earth’s core is provided (Bullen 1978, Dziewonski and Anderson 1981, Anderson 1995, Kennett et al. 1995, Anderson 2007, Heiffrich and Kaneshima 2010, Nimmo 2015, Souriau and Calvet 2015, Litasov and Shatskiy 2016). Some results of this work are reflected in Fig. 1. Further detailization of models of the internal structure of the Earth is currently being conducted (Pushcharovsky and Pushcharovsky 2011, Dobretsov and

\(^1\) Professor, academician of ANAS
Shatskiy 2012, Litasov and Schatskiy 2016). It is considered that it will be able to refine the existing results on the constitution of the core, to understand the nature of magnetic and electric fields, gravitational characteristics, the value of the heat flux, the geodynamics of the Earth, etc. in such a way. Advances in the field of seismic tomography allow making some additional corrections to the quantitative results. The use of observational data on the Earth's self-oscillations (Molodenskii and Molodenskaya 2015) and their comparison with theoretical calculations (Akbarov et al. 2016) will allow conducting further corrections of results.

Despite the current shortcomings and discrepancies between the results of the theoretical model concepts and experimental data, there is a general opinion that the inner core in the form of a solid deformable sphere consists of iron (Fe) and its alloys. This conclusion is based on a comprehensive analysis of the equation of state for Fe compounds, seismology data and thermodynamic modeling. Birch diagrams describing the relationship between the density and velocity of acoustic waves for iron and its compounds are used as the basic (primary) information. A great number of experimental studies have been implemented in this field (Mao et al. 2012, Ohtani et al. 2013, Chen et al. 2014, Decremps et al. 2014, Li and Fei 2014, Antonangeli and Ohtani 2015, Prescher et al. 2015) since F. Birch's studies (Birch 1952). The recent results have been analyzed in detail in this direction (Litasov and Shatskiy 2016). The existing inconsistencies between various model and experimental results are outlined. The
definition of the constitution of iron alloys, the results of which are more or less well justify the seismological data plays an important role in these studies. It is assumed that the outer liquid core has a uniform structure and lack of density relative to Fe (about 10%), and the inner solid core has a nonuniform structure (see Fig. 1(b)) with high anisotropy of seismic waves and lack of density about 5%. The problem of high uncertainty doesn’t have a unique solution in the estimation of values of shear velocities in the inner core which are significantly lower than that of iron and its alloys (Litasov and Shatskiy 2016).

It is noted that there are large zones of low velocities which are periodically activated in geological history and can change the geographical positions without going into the discussion of problems related to the nature and formation of mechanisms (see Fig. 1(b)).

The data on distribution of pressure, density, elastic parameters and equations of state are listed in theoretical models of the structure and composition of the medium of the Earth’s core. They are coordinated with integral conditions concerning the mass and moment of inertia, the results of studies on the natural oscillations, nutation of the Earth and seismotomographic studies (Bullen 1978, Dziewonski and Anderson 1981, Molodensky 2001, Molodenskii 2010, Molodenskii and Molodenskaya 2015, Molodenskii and Molodenskii 2015 etc.).

The discussed problems are also directly related to the mechanics of continuous medium. Insufficient attention is paid on issues related to geomechanics (with the exception of some results of experimental studies) in the review (Litasov and Shatskiy 2016). Apparently, it is related with the limited scope of this paper. These problems had always been in the field of view of researchers (Bullen 1978, Anderson 1995, Sorokhtin and Ushakov 2002, Lobkovski et al. 2004, Anderson 2007, Zharkov 2012).

Physical parameters of deformable solid media - such as the elasticity moduli, Poisson’s ratio, the velocity of propagation of body elastic waves in mechanics are determined under specific conditions (Lyav 1935, Sedov 1970). It is required to comply with the conditions of smallness of uniformly distributed homogeneous deformation

\[\varepsilon < \ll 1 \]

and the smallness of the ratio \(\frac{P}{\mu} \) (where \(P \) is a parameter of loading, in particular, pressure; \(\mu \) are moduli of the medium shift; \(\varepsilon \) is deformation parameter) in classical linear theory of elasticity of isotropic homogeneous media within the framework of which the indicated parameters are interpreted in all theoretical models of the Earth. The condition of uniform distribution of homogeneous deformation should also be controlled in the process of deformation of specific structures (sphere in the considered case). First of all, it is necessary to achieve simultaneous fulfillment of commonly accepted requirements of the mechanics for the media and constructions in solving the problems on distribution of physical and mechanical properties in the Earth’s interior, in particular in the solid core. Specific data (see Fig. 1(b)) on violating the requirements of the mechanics are suggested for pressure \(P = 329 \) GPa and shear modulus \(\mu = 157 \) GPa at a level of the sphere surface shown in publications (Bullen 1978, Dziewonski and Anderson 1981, Anderson 1995, Anderson 2007, Litasov and Shatskiy 2016). It can be seen that the value \(P \) exceeds the value \(\mu \) more than 2 times. According to Avsyuk (1973, 2001), Adushkin et al. (2000), Levin (2001) the sphere of
solid core takes part in movements within the liquid outer core due to the rotational motion of the Earth and tidal influences. Pressure value can nonuniformly be increased even more due to the resistance to this movement.

The conditions of carrying out the requirements concerning uniform distribution of homogeneous deformation are observed in standard laboratory experimental studies of physical and mechanical properties. Methods for conducting experiments, smallness of geometric dimensions of model samples, the actual impossibility of considering the mechanisms of long-term (over geological time) deformation and a number of other reasons don't allow providing possible violations of conditions of the mechanics under conditions of natural occurrence, as well as to exclude from the results of interpretations of influence of uncontrolled perturbations related to the mechanisms of long-term deformability of the structure of the sphere under the conditions of huge value of compression.

2. PROBLEM STATEMENT

This paper presents the results of geomechanical analysis of the data of geophysical studies within the non-classical linearized approach (NLA) (Abasov et al. 2000, Gül러yev 2010). At the same time the numerical data PREM (Dziewonski and Anderson 1981) are used taking into account the fact that the parameters of the inner core provided in this work taken as a basis in all pre-proposed theoretical models of the medium (Bullen 1978, Kennett and Engdahl 1991, Morelli and Dziewonski 1993, Kennett et al. 1995, Anderson 2007, Pushcharovsky and Pushcharovsky 2011). There are only minor differences which have not significant meaning for the conducted geomechanical analysis in various models.

The purpose of geomechanical analysis is to determine the conditions for pressure and strain ensure the correctness of the calculations of physical and mechanical properties of the model of solid core of the Earth on the basis of complex of geophysical data. The pressure and strain values should satisfy certain conditions in determining the physical and mechanical parameters of the medium. Only the results of measurements and calculations obtained in compliance with the conditions of uniform distribution of homogeneous strain is considered reliable. This condition may be violated in different situations.

3. ACHIEVEMENTS OF THEORETICAL LIMIT OF STRENGTH

Let's consider the case when the medium is evenly and uniformly deformed prior to the beginning of fracture. In this case, all calculations on the physical and mechanical parameters are correct, if the pressure value does not exceed the theoretical limit of strength. It is shown in NLA (Kuliev 1988a) that the value of the theoretical limit of the strength of the medium is defined as \(P = \mu \) under the conditions of compression (we are interested in this variant of deformation) for a perfect elastic isotropic material. Theoretically, it is the maximum (limit) pressure until the achievement of which the medium is deformed evenly and uniformly without fracture. It is determined from the condition of the loss of the ellipticity of motion Eq. (2). In this case, the
The uniform distribution of strain in the medium may also be violated as a result of the instability (in various forms), without fracture.

NLA allows defining the limits of change of strain within the framework of which the equilibrium of uniformly deformed states is stable. In case of violation of the stability conditions, the change of the equilibrium state of initially homogeneous uniform strain occurs. As a result, the strain in the body is unevenly distributed before reaching the limit strength of the material.

The questions of density distribution of the medium depending on the change of the strain were studied (Guliyev and Askerov 2007, Guliyev 2010, 2011, 2013). It is shown that, this dependence is not continuous due to the instability of strain under compression. Therefore, the change of the medium density in the deformable body is not monotone, but spasmodic in certain situations.

Let's consider the problem of stability of solid sphere to concretize the discussion. It is necessary to determine the highest values of surface compressive loads in which the equilibrium state of solid sphere remains stable. Previous theoretical studies (Guz 1979) shows that this load is determined by solving the problem of axisymmetric form of buckling of isotropic homogeneous sphere. Let's assume that the sphere is filled with homogeneous isotropic medium within the continuum approximation. The external compressive load is given on the surface of the sphere.

The questions of stability of equilibrium state of isotropic sphere under the influence of uniform surface loadings were studied in detail (Guz 1979, 1986a). Studies were carried out within the framework of a three-dimensional non-classical linearized theory (NLA), sources of which date back to the incremental theory of mechanics of deformable solid body (Biot 1965). At the present time, three-dimensional NLA is developed greatly and is used to study various problems of mechanics (Guz 1979, 1986a,b, 1989, Kuliev 1988b, Akbarov 2013, 2015).

The two states of deformable body are considered in NLA. The first state (motion, equilibrium, strain process) is primary or nonperturbed. The second condition is perturbed. All values relating to the second condition are presented as the sum of the corresponding values of the first and second state. Perturbations are considered to be small values compared to the corresponding values of the first (nonperturbed) state. Natural (undeformed) state, which corresponds to the case of lack of pressure and strain in the body is also used to describe the strain in the Lagrangian method.

Deformation is taken in the following form under the uniform initial state

\[\mu_0^0 = (\lambda - 1)X_m. \]

(1)

Here \(\mu \) are displacement components along the coordinate axis; \(\lambda \) are coefficients of elongation (shortening) along the coordinate axis; \(X_m \) are the Cartesian coordinates.
In homogeneous initial state, equation systems of motions take the form within the compressible medium in the Lagrangian coordinates (which coincide with the Cartesian coordinates in the natural state) (Guz 1986a,b):

\[
\left(\omega_{\alpha\beta\rho\sigma} \frac{\partial^2}{\partial x^\alpha \partial x^\beta} + \rho \Omega^2 \delta_{\alpha\sigma} \right) u_{\alpha} = 0 \quad i, \beta, \alpha, m = 1, 2, 3, 4 \quad \omega_{\alpha\beta\rho\sigma} = \text{const}.
\]

(2)

Boundary conditions at the surface of the domain \(S_1 \) in terms of stress

\[
N_i \omega_{ij\alpha\beta} \frac{\partial u_\alpha}{\partial x_\beta} = P_i.
\]

(3)

Here \(u_\alpha \) are vector components of disturbance of displacement; \(P_i \) is disturbance of surface forces; \(\rho \) is the medium density; \(N_i \) are components of unit normal vector to the surface of the body in the natural state; \(\delta_{\alpha\sigma} \) is the Kronecker symbol; \(\omega_{\alpha\beta\rho\sigma} \) are covariant components of the tensor of the fourth rank characterizing linear, non-linear physical-mechanical properties of the medium and its initial state of stress. In considering the problems of the static, inertial component \(\rho \Omega^2 \delta_{\alpha\sigma} \) is omitted in the Eq. (2) where \(\Omega \) is cyclic frequency of harmonic wave.

Various classifications are possible in the formulation of problems of NLT. "Follower" (non-conservative) and "dead" (conservative) surface forces are distinguished depending on the nature of the action of surface loads. Surface "follower" forces are those forces which keep up changes of configurations of body surface in the process of deformation, i.e. they can change the direction of an action and value according to deformation process. An action of liquid and gas is modeled as "follower" loads in the calculation practice. Surface "dead" forces retain their original direction and value in the process of deformation. Three various variants of theory are also distinguished in the NLT depending on values of deformation in the initial state (Guz 1986a) a) theory of large (finite) initial strain; b) the first variant of the theory of small initial strain (shifts and elongation are small in comparison to the unit); c) the second variant of the theory of small initial strain (it is considered that the relationship between the components of the strain tensor and the first derivatives from displacements are linear in addition to the first variant of the theory of small initial strain). Two cases are also distinguished to provide plane harmonic wave. The variation of distance isn't considered between material particles due to initial strain, and the velocity of wave propagation is called "natural" in the first variant (Thurston and Brugger 1964, Guz 1986b). The variation of distance isn't considered between material particles due to the initial strain, and the velocity of wave propagation is called "true" in the second variant. The formulations of buckling problem are also distinguished for compressible and non-compressible models in the deformable bodies. The problems are considered only for compressible and non-compressible media and case of "true" velocities in the present paper. The generalization of results is of technical nature for other cases.

In the case of the uniform homogeneous deformation of singly connected isotropic media \(\lambda_1 = \lambda_2 = \lambda_3 \) for all the above-mentioned variants of the theory of the initial strain \(\omega_{ij\alpha\beta} \) in a single form (Guz 1986a)
where the designations are respectively introduced for the theory of large initial strain and the first variant of small initial strain theory and the second variant of small initial strain theory

\[
\lambda_0 = \lambda_1^2 a_0 - S_0; \quad \mu_0 = \lambda_1^2 b_0 + S_0;
\]

\[
\lambda_0 = \lambda_1^2 a_0 - S_0; \quad \mu_0 = \lambda_2^2 b_0 + S_0; \quad S_0 = \sigma_0;
\]

\[
\lambda_0 = a_0 - S_0; \quad \mu_0 = b_0 + S_0; \quad S_0 = \sigma_0.
\]

Values \(a_0, b_0, S_0 \) and \(\sigma_0 \) in terms of \(\lambda_1 = \lambda_2 = \lambda_3 \) are determined from expressions

\[
a_0 = A_{ji} - 2\mu_{ji}; \quad b_0 = \mu_{ij}; \quad S_0 = s_{iij}; \quad \sigma_0 = s_{jij}.
\]

The summation isn't conducted on indices in these formulae; \(s_{jij} \) are normal components of the stress tensor in the initial state.

Explicit algebraic expressions for \(A_{ji}; \mu_{ij} \) and \(s_{iij} \) are obtained in considering the concrete elastic potentials (Guz 1986a).

Considering Eq. (4), the Eqs. (2) and (3) take the form

\[
(\lambda_0 + 2\mu_0) \text{grad} \text{ div } \mathbf{u} - \mu_0 \text{ rot rot } \mathbf{u} + \rho \epsilon^2 \mathbf{u} = 0
\]

\[
[N(\lambda_0 + S_0) \text{ div } \mathbf{u} + (2\mu_0 - S_0) \mathbf{N} \cdot \nabla \mathbf{u} + (\mu_0 + S_0) \mathbf{N} \times \text{rot } \mathbf{u}] = \mathbf{P}.
\]

In setting "follower" load at the surface the right side of the condition (9) takes the form

\[
\mathbf{P} = S_0 (\mathbf{N} \text{ div } \mathbf{u} - \mathbf{N} \cdot \nabla \mathbf{u} - \mathbf{N} \times \text{rot } \mathbf{u}).
\]

Equation (8) completely coincides with Lame's equation of classical linear theory of elasticity, if replace Lame's parameters \(\lambda \) and \(\mu \) to the parameters \(\lambda_0 \) and \(\mu_0 \) according to Eqs. (5)-(7).

It follows from Eqs. (9) and (10) that in general such an analogy is absent in the linear theory under the boundary conditions. The analogy holds only in the case of "follower" loads.

Thus, the mathematical problem of stability of an isotropic sphere under uniform compression is formulated in the form of Eq. (8) and the boundary condition of Eq. (9). It is necessary to take \(P = 0 \) in case of setting the external load on the surface of the sphere in the form of "dead" loads in the right side of the boundary conditions of Eq. (9).

In such formulation, the problem of stability of the equilibrium state of the body of an arbitrary geometrical shape from the compressible media was studied in detail under uniform compression (Guz 1979, 1986a). It is shown that in case of setting "follower" loads on the whole body surface, equilibrium state defined by Eq. (1) is stable under the fulfillment of conditions

\[
\lambda_0 + \frac{2}{3} \mu_0 > 0; \quad \mu_0 > 0.
\]

Conditions of Eq. (11) should always be fulfilled, and therefore, they are considered as the restriction on the structure of the equation of state. It is considered as specific models of the medium a) elastic isotropic body with potential of harmonic type within the theory of large initial strain and stability conditions are obtained in the form
\[0 < \lambda_i < 1; \quad \frac{\lambda + \frac{2}{3} \mu}{\lambda + \frac{4}{3} \mu} < \lambda_i < 1. \] \hfill (12)

b) an elastic body with a quadratic potential within the second variant of small initial strain theory and stability condition is obtained in the form

\[(2 - \lambda_i) \left(\lambda + \frac{2}{3} \mu \right) > 0, \quad \mu + 3(\lambda_i - 1) \left(\lambda + \frac{2}{3} \mu \right) > 0. \] \hfill (13)

c) elasto-plastic body (deformation theory) within the second variant of small initial strain theory and stability condition is obtained in the form

\[P < \mu. \] \hfill (14)

d) elasto-plastic body (Prandtl-Reuss theory of plasticity) within the second variant of small initial strain theory

\[P < \lambda_i^2 \mu. \] \hfill (15)

It is shown for all the considered models of the medium that equilibrium state is stable in case of setting follower loads on the surface of an isotropic sphere under the fulfillment of conditions of Eqs. (11)-(15). Herein, the distribution of homogeneous deformation is uniform.

Considering the body in the form of a sphere (medium material is given as: quadratic elastic potential, deformation theory of small elasto-plastic deformation and Prandtl-Reuss theory of plasticity; hereditary-elastic linear body of ageless type; viscous elasto-plastic body), it is shown that in case of "dead" surface loads, there is a critical load \(P_{cr} \) (according to the value this load is less than the value \(\mu \)) in reaching of which the equilibrium state of the sphere defined by Eq. (1) is unstable. As a result, the distribution becomes uniform in the body of homogeneous deformation. Similar results have also been obtained within the theory of large initial strain using various elastic potentials.

In this case, in general terms it is impossible having taken the inequality for \(\lambda_0 \), \(\mu_0 \) and \(S_0 \), and so that it is ensured the fulfillment of the condition of Eq. (11) regardless of the body shape. Therefore, the following standard equation (Guz 1979, 1986a) is obtained to define low values of the critical load in the considered problem providing general homogeneous solutions of the Eq. (8) similar to the classical theory of elasticity and requiring the fulfillment of the boundary conditions of Eq. (9) (it is necessary to take \(P = 0 \) in the right side)

\[2 \mu_0 (\lambda_0 + \mu_0) + S_0 (\lambda_0 + 3\mu_0) = 0. \] \hfill (16)

Critical forces or strain leading to the buckling of the equilibrium state of the sphere are calculated using Eqs. (5)-(7) from Eq. (16).

We obtain within the second variant of small initial strain theory for elastic isotropic body from Eq. (16) considering Eq. (7)

\[P_{cr} = \frac{\mu}{4(1-2\nu)} \left(5 - 4\nu - \left(16\nu^2 - 8\nu + 9 \right)^{1/2} \right), \] \hfill (17)

where \(\nu \) is Poisson's coefficient of the medium.
In case of large initial strain theory and application of harmonic elastic potential using Eq. (5) from the Eq. (16) we define the critical value of shortening as follows

$$\lambda_1^* = 1 + \frac{-5 + v(3 + 2v) + \left[\frac{-4v(1 + 2v)}{3 - 2v}(1 + v) - (3 - 2v) \right]}{8 - 2v(1 + 2v)(3 - 2v)/(1 + v) + (1 - 2v)}.$$ \hspace{1cm} (18)

Similarly, we can obtain the calculation formulae for the case of quadratic, Murnaghan and other forms of elastic potentials. Eqs. (17) and (18) indicate that the buckling of the equilibrium state is implemented for both small and large deformations and is general in nature.

4.1 Internal instability

Critical values of stress and strain leading to violation of conditions of Eq. (11) cause the phenomenon in the body, which is called the "internal" instability in theory (Biot 1965, Guz 1986a,b). In the case of initially isotropic media, as if the initial pressure plays the role of an internal structure similar to the internal structure of the composite media in the anisotropic approximation within the phenomenological (continuum) approach.

"Internal" instability is studied for an infinite body in the continuum description of materials when a certain load is given on "infinity". At the same time the instability is not related to the influence of boundary conditions and geometrical dimensions of the body or structural elements. The critical values of the stress and strain are determined from the study of system types of differential Eqs. (2) and (8) in an infinite domain. The system of Eq. (2) loses the property of ellipticity under the conditions of occurrence of the phenomenon of "internal" instability. In this case, the condition of uniqueness of the solution of Eq. (11) of the linearized problems is violated. The limit value of coefficient of elongation (shortening) is determined from (11) by setting the structure of the elastic potential. In case of modeling the deformation process using harmonic elastic potential within the theory of large initial strain from Eqs. (5) and (11), we get

$$\lambda_1^* = \frac{1 + v}{2 - v}; \quad \varepsilon_0^* = \frac{3}{2} \frac{2v - 1}{(2 - v)^2}.$$ \hspace{1cm} (19)

We obtain in case of quadratic elastic potential from Eqs. (11) and (12) within large initial strain theory

$$\lambda_1^* = \left(\frac{1 + v}{2 - v}\right)^\frac{1}{2}; \quad \varepsilon_0^* = \frac{1}{2} \frac{2v - 1}{2 - v}.$$ \hspace{1cm} (20)

We obtain in case of linear elastic isotropic material within the second variant of small initial strain theory

$$P_{ep} = \mu; \quad \varepsilon_0^* = \frac{1}{2} \frac{2v - 1}{1 + v}.$$ \hspace{1cm} (21)

ε_0 is a parameter of uniform deformation in Eqs. (19)-(21). It follows from the above mentioned Eqs. (11)-(15) and Eqs. (19)-(21) that the "internal" instability occurs within.
the NLA in uniform deformation (compression) of the isotropic sphere on the level of pressure comparable in value with shear moduli for different elastic potentials obtained within the second variant of small and large initial strain theory.

5. ELASTIC WAVE PROPAGATION IN THE DEFORMED MEDIUM

The implementation of condition of Eq. (11) also provides validity (not negative values) velocities of propagation of small perturbations (such as the Hadamard conditions (Truesdell 1975, Guz 1986b)) in the form of small-amplitude waves in media with initial deformations.

Consequently, equality to zero or invalidity of velocities of propagation of acoustic waves correspond to the phenomenon of "internal" instability of the stressed media.

Basic kinematic parameters of the wave field - velocities of propagation of elastic waves significantly depend on the pre-deformation. Theoretical and applied problems are intensively studied in this field by Biot (1965), Guz (1986b), Kuliev and Jabbarov (1998, 2000), Akbarov (2015), Hadji et al. (2015), Li and Tao (2015), Tao et al. (2016), Teachavorasinskon and Pongvithayapanu (2016), Kakar and Kakar (2016). Problems of propagation of elastic waves are also intensively studied in the solid core of the Earth by Deuss (2014), Wang et al. (2015). Below provided results were obtained within the framework of non-classical linearized theory considering small and large initial deformations.

In case of uniform pre-compression of isotropic medium, the "true" velocities of propagation of elastic waves in it are defined by the expressions (Guz 1986b)

\[\rho C^2_p = \lambda + 2\mu + Pk^R_p, \]
\[\rho C^2_s = \mu - Pk^R_s. \]

Here \(C_p, C_s \) are the "true" velocities of quasi-pressure and quasi-shear elastic waves; \(K^R_p, K^R_s \) are coefficients of nonlinear action of isotropic medium (Sadovsky and Nikoalev 1982, Guliyev 2009). Structures of expressions for \(K^R_p \) and \(K^R_s \) are concretized by assignment the form of elastic potentials.

It was obtained in the case of application of elastic potential of Murnaghan’s form and "true" velocities within the second variant of small initial strain theory (Guliyev 2009)

\[K^R_p = \frac{1}{3K_0} \left[5\lambda + 6\mu + 2(c + 5b + 3a) \right], \quad K^R_s = \frac{1}{3K_0} \left(3\lambda + 4\mu + c + 3b \right), \]
\[K^R_p = \frac{1}{3K_0} \left[7\lambda + 10\mu + 2(c + 5b + 3a) \right], \quad K^R_s = \frac{1}{3K_0} \left[3(\lambda + 2\mu) + c + 3b \right]. \]

Within the first variant of small and large initial strain theory, \(a, b, c \) are the elasticity moduli of the 3rd order. If \(a = b = c = 0 \) is accepted in Eqs. (23) and (24), we obtain the results corresponding to quadratic elastic potential within the second variant of small initial strain theory

\[K^R_p = \frac{1}{3K_0} \left(5\lambda + 6\mu \right) = \frac{3 - \nu}{1 + \nu}, \quad K^R_s = \frac{1}{3K_0} \left(3\lambda + 4\mu \right) = \frac{2 - \nu}{1 + \nu}, \]
\[K_p^R = \frac{1}{3K_0} (7\lambda + 10\mu) = \frac{5 - 3\nu}{1 + \nu}, \quad K_s^R = \frac{1}{K_0} (\lambda + 2\mu) = \frac{3(1 - \nu)}{1 + \nu} . \]
(26)

The presence of Eqs. (23)-(26) allows calculating the influence of non-linear strain on the velocity of propagation of elastic waves.

We derive conditions under the implementation of which the velocities of propagation of elastic waves are true in pre uniformly strained isotropic medium using the Eq. (22). Accordingly, pressure elastic wave couldn't be propagated with true velocity in cases of the second variant of small and large initial strain theory in the quadratic elastic potential in terms of implementation

\[\frac{P}{\mu} \geq \frac{2(1 - \nu^2)}{(1 - 2\nu)(3 - \nu)}; \quad \frac{P}{\mu} \geq \frac{2(1 - \nu^2)}{(1 - 2\nu)(5 - 3\nu)} \]
(27)

in the stressed isotropic medium. This condition for shear elastic waves takes the form

\[\frac{P}{\mu} \geq \frac{1 + \nu}{2 - \nu}; \quad \frac{P}{\mu} \geq \frac{1 + \nu}{3(1 - \nu)} . \]
(28)

It follows from the Eqs. (29) and (24) that it is also necessary to have numerical information on the elasticity moduli of the 3rd order \(a,b,c\) along with the data of Lame's coefficients to obtain the numerical evaluation in the case of using the potential of Murnaghan's form.

6. CONCLUSIONS

Based on the results obtained in the previous sections (Eqs. (11)-(21) for the theoretical limit of strength and instability of the equilibrium state and Eqs. (22)-(28) for propagation of elastic waves in the deformable media), the appropriate calculations are performed. Numerical values of critical forces and elongations are shown in Table 1 corresponding to the buckling of the equilibrium state in Eq. (1) in setting of "dead" forces and "internal" instability on the surface of the sphere.

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.41</th>
<th>0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{P^*}{\mu})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{P}{\mu})</td>
<td>0.5</td>
<td>0.53</td>
<td>0.57</td>
<td>0.60</td>
<td>0.64</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>(\lambda_i^*)</td>
<td>0.5</td>
<td>0.58</td>
<td>0.67</td>
<td>0.76</td>
<td>0.88</td>
<td>0.89</td>
<td>0.94</td>
</tr>
<tr>
<td>((\lambda_i)^*)</td>
<td>0.75</td>
<td>0.79</td>
<td>0.84</td>
<td>0.89</td>
<td>0.94</td>
<td>0.94</td>
<td>0.97</td>
</tr>
</tbody>
</table>

The results for \(\frac{P}{\mu}\) are calculated on Eq. (17), for \((\lambda_i)^*\) on Eq. (18), and \(\lambda_i^*\) on Eq. (19). They show that the equilibrium state of the sphere is unstable both within the theory of small and large initial strain in the considered type of loading. The critical
values of forces and coefficient of elongation (shortening) in obtaining of which "internal" instability is respectively implemented under small and large initial strain in the sphere are shown (lines of 2 and 4 of Table 1). It follows from the comparison of results of the second and fourth lines to the results of the third and fifth lines of Table 1 that the buckling of the equilibrium state of elastic homogeneous isotropic sphere on geometric forming in case of influence of "dead" loads on its surface precedes the "internal" instability. The equilibrium state of the sphere is stable on geometric forming in case of influence of "follower" loads on the surface. Therefore, the "internal" instability occurs without preliminary forming in this case. It should be emphasized that it is clear from the formulae of critical forces and elongation that they don't depend on the geometric parameters of the sphere and buckling mode. An exhaustive explanation is given to this case (Guz 1986а). The boundary surface is one of the coordinate surfaces of the spherical system of coordinates in the considered problems. Eigenvalues should not depend on the geometric parameters of the problem due to the nature of Lame's Eq. (8) (which includes derivatives of the same order) and the indicated case. The critical loads will depend on the geometric parameters (for example, thin-walled parameters) in case of considering the problems of stability of bodies bounded by several coordinate surfaces. The lack of effects of plastic and viscous properties of the material (Eqs. (14) and (15)) on the value of the critical parameters is related with the fact that inelastic deformation is incompressible due to the adopted laws of state, and inelastic deformation does not occur due to uniform compression in the initial state.

Calculation results implemented on Eqs. (25)-(28) are shown in Table 2. The data relating to the second variant of small initial strain theory is given in the numerator but in denominations - large initial strain theory.

<table>
<thead>
<tr>
<th>ν</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.41</th>
<th>0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^r_P)</td>
<td>-1.5</td>
<td>-1.3182</td>
<td>-1.1668</td>
<td>-1.0385</td>
<td>-0.9286</td>
<td>-0.9184</td>
<td>-0.8793</td>
</tr>
<tr>
<td>(K^s_P)</td>
<td>-2.5</td>
<td>-2.1364</td>
<td>-1.8333</td>
<td>-1.5769</td>
<td>-1.3571</td>
<td>-1.3369</td>
<td>-1.2586</td>
</tr>
<tr>
<td>(P^r_P)</td>
<td>0.6667</td>
<td>0.8534</td>
<td>1.1429</td>
<td>1.6852</td>
<td>3.2308</td>
<td>3.5689</td>
<td>6.2549</td>
</tr>
<tr>
<td>(P^s_P)</td>
<td>0.4</td>
<td>0.5266</td>
<td>0.7273</td>
<td>1.1098</td>
<td>2.2105</td>
<td>2.4518</td>
<td>4.3699</td>
</tr>
</tbody>
</table>

The numbers given in lines 4 and 5 of the Table 2 show that if these values are exceeded, the conditions of Eqs. (27) and (28) aren't fulfilled within the considered variants of NLT, i.e. elastic pressure and shear waves can't be propagated in the medium with true velocity accordingly. The subscript in \(P^r_P\) – indicates that these values relate to pressure and \(S\) to shear waves. Contrary to that it follows from the data of Fig. 1(a), b that velocities of pressure and shear elastic waves in the sphere are true in PREM in conditions \(P^r_P \geq 2\mu\). It shows once again that the data on the physical and mechanical, acoustic and density characteristics in the theoretical models should
be distributed in accordance with relevant requirements of the mechanics of deformable media with initial stress considering nonlinear laws of state. The obtained results relate to the data of the inner core. At the same time, they predict that it is necessary to process and interpret the relevant geological and geophysical data on the basis of nonlinear (at least within NLT) theories considering preliminary deformation of the medium in solving the problem on the distribution of mantle and lithosphere parameters.

Data on the composition of the inner core material indicate its anisotropy (Fig. 1b) (Litasov and Shatskiy 2016). Naturally, phenomenon of "internal" instability will occur at much lower levels of loads and strain than in the isotropic approximations in the anisotropic medium because of the smallness of the shear stiffness.

It should be noted that the results presented in this article are obtained without considering the influence of temperature, the distribution of which is shown in Fig. 1(a). The consideration of temperature influence on critical values of instability worsens the situation. Buckling process is implemented at significantly lower pressure level under the influence of temperature fields. Therefore, the consideration of temperature will not provide a qualitative impact on the conclusion on the insufficiency of interpretation of geophysical data within the classical theory. The consideration of temperature is necessary to solve specific problems of the local distribution of the considered parameters.

ACKNOWLEDGEMENT

This work has been carried out by the full financial support of the NAS of Azerbaijan within the program “Complex of researches of theoretical and experimental interdisciplinary problems of geomechanics”, under the resolution of the Presidium of the NAS of Azerbaijan #5/3 dated on February 11, 2015.

REFERENCES

Bullen, K.E. (1978), *The Density of the Earth*, Mir, Moscow, Russia.

Molodensky, M.S. (2001), *The Gravitational Field. The Figure and the Internal Structure of the Earth*, Nauka, Moscow, Russia.

Truesdell, K. (1975), Initial Course of Rational Mechanics of Continuum Media, Nauka, Moscow, Russia.

Zharkov, V.N. (2012), Physics of the Earth's interior, Nauka i obrazovanie, Moscow, Russia.