ABSTRACT

A numerical investigation is conducted on the incompressible fluid flow around a square prism symmetrically placed in a rectangular channel. The effect of gap spacing ratio g/d ($= 0.4 – 12.0$) is studied on Strouhal number (St), time mean drag coefficients (C_D), fluctuating lift coefficients (C_L') and flow structures where g is the spacing between the prism and channel wall and d is the height of the prism. For all simulations, Reynolds number (Re) is fixed at 100. It is observed that the St and C_D both increase with decreasing g/d. On the other hand, with increasing g/d, the C_L' decreases for $0.4 < g/d < 1.0$, increases for $1.0 \leq g/d < 2.0$ and again decreases for $2.0 < g/d \leq 12.0$. Three distinct vortex shedding regimes are observed (a) wall-dominated vortex street ($0.4 \leq g/d < 1.0$), (b) reverse Karman vortex street ($1.0 \leq g/d < 3.5$), and (c) Karman vortex street ($3.5 \leq g/d \leq 12$).