Comparative Study of Shear Design Code Models Specified in International Building Codes

Meirzhan Yerzhanov\textsuperscript{1), Dichuan Zhang\textsuperscript{1), Sung-Woo Moon\textsuperscript{1), Jong Kim\textsuperscript{1), and *Deuckhang Lee2)}

1) \textit{Department of Civil and Environmental Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan}
2) \textit{Department of Civil and Environmental Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan}
2) \texttt{deuckhang.lee@nu.edu.kz}

\section*{ABSTRACT}

In spite of long-term research efforts for the last several decades, the shear resistance mechanisms of an reinforced concrete (RC) member still remain as a complex and controversial problem. Therefore, different countries have own shear provisions based on different experimental and theoretical backgrounds. In this paper, six different shear design code models and modified SNiP shear code proposed in the authors' previous paper were chosen to conduct a comparative study in terms of accuracy and level of safety. ACI-DAfStb database for reinforced concrete (RC) structures without transverse reinforcement was used, in which a total of 784 experimental tests results were included. The results of this study showed that the accuracy and safety level of modified SNiP equation is comparable with the current international building code models.

\section{1. INTRODUCTION}

The shear contribution of concrete (\(V_c\)) specified in SNiP, which was derived by PMR principle (plane of minimum resistance), provides unsafe shear design results for RC beam members. The shear design equation of SNiP code cannot thoroughly measure the size effect of shear-critical RC beams without transverse reinforcement. According to Borishansky (1975), the factor K of 1.5 was suggested with the current shear design equation for the shear contribution of concrete (\(V_c\)). The modified equation is verified in this study with different 784 test data sets from the ACI-DAfStb shear database. Moreover, comparison of various design standards was conducted to check the modified version of SNiP shear strength equation’s safety and accuracy levels.

\section{2. SHEAR DATABASE}
The ACI-DAfStb shear database by Reineck et al. (2013) was used to check the shear strength equations. In order to avoid mistakes, the results were filtered by some criteria: the test results should not include a compressive strength of concrete \(f'_c \) less than 12 MPa, the web width of section \(b_w \) under 70 mm, and the shear span-depth ratio \((a/d) \) under 2.4. In order to escape the effect of arch action, the span-depth ratio was chosen to be greater 2.4. For the evaluation process, all data was used by comparison. In Fig. 1 there are distributions of the key test variables which were used in experimental results.

(a) Compressive strength of concrete
(b) Effective member depth

Fig. 1 – Summary of shear database

3. SNIP CODE FOR RUSSIA AND POST-SOVIET COUNTRIES AND MODIFIED SNIP MODEL

The shear contribution of concrete \((V_c) \) specified in SNiP code is expressed, as follows:

\[
V_c = K f_t \frac{d}{a} b_w d
\]

where \(K \) - strength adjustment factor which is 0.15, \(f_t \) is tensile strength of concrete, \(d \) is effective member depth of RC member, \(a \) is shear span length, and \(b_w \) is the width of web concrete. In addition, the \(V_{c,\min} \) and \(V_{c,\max} \) are specified, as follows:

\[
V_{c,\min} = 0.5 f_t b_w d
\]

\[
V_{c,\max} = 2.5 f_t b_w d
\]

A modification factor was derived to consider the size effect, and Eq. (1) can be rewritten as follows:

\[
V_n = K' \frac{d}{a} f_t b_w d = K_d f_t b_w d = 6 \sqrt{\frac{1}{d}} f_t b_w d
\]

4. COMPARATIVE STUDY

There are six international codes which were chosen in the comparative studies such as SNiP (2012) for the CIS region, ACI318 (2014) for United States, Eurocode2 (2004)

4.1. Comparison of shear design methods

Table 1 shows the shear strength ratio \(\frac{V_{\text{test}}}{V_{\text{cal}}} \) of 784 test results which were calculated using different design models.

<table>
<thead>
<tr>
<th>CodeModels</th>
<th>Mean</th>
<th>ACI318</th>
<th>EC2</th>
<th>CSA-A23.3</th>
<th>GB50010</th>
<th>JSCE</th>
<th>Proposed model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.20</td>
<td>1.51</td>
<td>1.76</td>
<td>1.36</td>
<td>0.81</td>
<td>1.38</td>
<td>1.67</td>
</tr>
<tr>
<td>StandardDeviation</td>
<td>0.47</td>
<td>0.58</td>
<td>0.54</td>
<td>0.35</td>
<td>0.31</td>
<td>0.41</td>
<td>0.50</td>
</tr>
<tr>
<td>COV</td>
<td>0.39</td>
<td>0.38</td>
<td>0.30</td>
<td>0.26</td>
<td>0.39</td>
<td>0.38</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The most accurate prediction among the design codes was that obtained by the CSA-A23.3 code model. In addition, the JSCE code model also showed good results and the GB50010 code model was the least accurate. The model codes such as SNiP, ACI318, and GB50010 showed the more uncertainties.

4.2. Effective member depth

Fig. 2 shows the shear strength ratios \(\frac{V_{\text{test}}}{V_{\text{cal}}} \) estimated from the shear design codes. The shear strengths of RC members decreases as the effective member depth \(d \) increases. The effect of the effective depth \(d \) is considered in EC2, CSA-A23.3, JSCE, and GB50010, however, apart from CSA-A23.3 the direct effective member depth was chosen by the semi-empirical factors. These factors diverge from \(\sqrt{d} \) to \(\frac{1}{\sqrt{d}} \) for JSCE and GB50010. The EC2, CSA-A23.3, and JSCE code models have large member size showed small scatters for the members with even large member depth. Other models showed a tendency of underestimation as the member depth increases. As shown in Fig. 3, the modified SNiP code well reflect the effective depth, thus, it showed no clear tendency according to the member depth with a conservative strength estimation.
Fig. 2 – Verification of design code against effective member depth

Fig. 3 – Verification of the modified SNiP code against effective member depth

5. CONCLUSION
This study aimed to check the safety and accuracy level of the modified SNiP code model, and it was done by comparing analytical accuracy and safety level with the shear design equations specified in codes such as SNiP (the CIS region), ACI318 (United States), Eurocode2 (European Union), CSA-A23.3 (Canada), JSCE (Japan), and GB 50010 (China).

The modified SNiP code was suggested considering the effective member depth and consequently, this allows more accurate estimation for the shear strength compared to the existing SNiP code model.
ACKNOWLEDGEMENT

This research was supported by the Nazarbayev University Research Fund, and the authors are grateful for this support.

REFERENCES

SNIP 2.03.01-84, Concrete, and reinforced concrete structures, Ministry of Regional Development of the Russian Federation, Moscow, Russia, 2012, 162 pp.